
Tetrahedron Letters Vol. 21, pp 173-176 ©Pergamon Press Ltd. 1980. Printed in Great Britain

AMINOHALOBORANE IN ORGANIC SYNTHESIS. VIII.¹ A ONE-STEP SYNTHESIS OF 2-AMINOBENZHYDROLS FROM ANILINES

Tatsuo Toyoda, Kazuyuki Sasakura, and Tsutomu Sugasawa* Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

<u>Summary</u> 2-Aminobenzhydrols were obtained regiospecifically from anilines and benzaldehydes with the aid of phenyldichloroborane and triethylamine via N-anilinophenylchloroborane.

We have recently reported a specifically ortho-directed reaction of secondary anilines (1a) with mainly aromatic aldehydes to give 2-<u>sec</u>-aminobenzhydrols (2) using boron trichloride and triethylamine.² However, the similar reaction of primary anilines (1b) failed to give mainly aldimine (3) (reaction A). We will report here that the use of phenyldichloroborane³ (4) instead of boron trichloride has removed this defect (reaction B). The isolation of 2-phenyl-4-(4-nitrophenyl)-1,4-dihydro-3,1,2-benzoxazaborine (6, X = H, Y = 4-NO₂) verified the cyclic reaction path via N-anilinophenylchloroborane (5), although isolation of 5 failed probably due to self-condensation. The work-up with aqueous sodium hydroxide gave the desired product (7) with a lesser amount of 3. Various examples are shown in the Table.

NH-

(br)

3406

3380

3600, 3510, 6.24

3696, 3500, 6.38(1H, d,

s, CH3)

J = 4 Hz)

X-ONH2					v-€	Эсно	×- (
						0		ÓH	-	
Run	Compd	x	Compd	¥	Compd	% yield ^{a,b}	Mp, °C (from)j	IR, ^k cm ⁻¹ (CHC1 ₃)	NMR, ¹ 6 (CDC1 ₃)	
1	1Ъ	н	8a	Н	7a ⁴	78(16)	115-116, 11t ⁴ 119-120 (EtOH)		5.70	
2	1ъ	H	8a	н	7a	73 ^c (14) ^c	(12011)			
3	1b	н	8a	н	7a	26d(51)d				
4	1b	H	8Ъ	$4-NO_2$	7Ъ	72(16)	142-143		0, 5.85 (1H, d,	
-					_			3490, 340		
5	1Ъ	н	8c	2-C1	7c	96 (4)	91-92	3600, 348	0 6.10	
6	1Ъ	н	8d	4-0CH ₃	7a ⁵	62(29)	61-62 11t ⁵ 59-60.5	(br) 3600, 348 (br), 339		
7	lc	4-0CH ₃	8a	H	7e	65(13)	73-74	3600, 342	D, 5.70, 3.64(3H,	
8	ld	4 - C1	8a	H	7£ ⁶	26(>50)	105-107 11t ⁶ 112-113	3380 3600, 350 3400	s, OCH ₃) D, 5.68(1H, d, J = 4 Hz)	
9	1d	4-C1	8c	2 - C1	7g	86(9)	101-102	3600, 348 3400		
10	1d	4-C1	8e	3-NO2	7h.,	55(17)	155-156	3700, 362	0 5.86(br) ^m	
11	le	4-NO2	8c	2-C1 ²	717	16 ^e (70)	107-108		D, 6.10(1H, d,	
		2				- • • • •	lit ⁷ 127-128	3400	J = 4 Hz)	
12	1f	4-COOEt	8c	2-C1	7j	60(23)	106-107		0, 6.08(1H, d,	
								3400, 171		
								(C=0)	1.23(3H, t,	
									J = 8 Hz,	
			•						CH_3CH_2O , 4.17 (2H, q, J = 8	
									Hz, CH_3CH_2O)	
13	lg	^{2-сн} з	8c	2-C1	7k	84(11)	109-110		D, 6.13, 2.10(3H,	
14	lh	2-OCH3	8c	2-C1	71	86(3)	116-117	3400	3, CH ₃) 0, 6.16, 3.80(3H,	
14	111	2-0013	90	2-01		00(3)	110-117	3395	s, OCH ₃)	
15	11	^{3-сн} з	8a	н	7m ^f	18(10)	92-94		3, 5.78, 2.23(3H,	
					7n ^g	24	140-141	3612, 340	s, CH ₃) 0 6.18, 2.33(3H,	

^a Isolated yield based on aniline used. ^b Yield in parenthesis shows that of the correspond-ing 3. ^c Yield obtained in the reaction in CH₂Cl₂ and THF (1:1). ^d Reaction using n-butyldi-chloroborane⁹ instead of 4. In this run an epimeric mixture of 2,4-diphenyl-1,3-oxazine (11%) was isolated. 0il, NMR δ 5.50 and 5.82 (lH, d, J = 4 Hz $\frac{Ph}{HN} \subset (\frac{H}{O})$, 5.98 and 6.06 (lH, s, $\frac{Ph}{Ph} \subset (\frac{H}{O})$). ^{Ph} $C \subset \frac{H}{O}$). ^e Reaction time 20 hr. ^f 4-Methyl-2-aminobenzhydrol. ^g 6-Methyl-2-aminobenzhydrol. ^{ph/1}C-¹ h 4-Nitro-2-amino-2'-chlorobenzhydrol. ⁱ 6-nitro-2-amino-2'-chlorobenzhydrol. ^j CH₂Cl₂- or ther-petroleum ether. ^k NH and OH (taken with JASCO IRS spectrophotometer). ^l Benzyl proton, lH, s (taken with Varian EM-360-L spectrophotometer). ^m CDCl₃ + d₆DMSO (1:1).

2(86)

11

011

126-127

70^h

7p¹

3-NO2

8c

2-C1

16

1j

The following is a typical procedure. To a stirred solution of 4 (3 mmol) in CH_2Cl_2 (3 mL) was added a solution of 1 (R = H) (3 mmol) in CH_2Cl_2 (4 mL) at $-20^{\circ}--15^{\circ}$. To the resulting suspension was added a solution of Et_3N (7.5 mmol) in CH_2Cl_2 (2 mL) and it was stirred for 30 min at the same temperature. Then a solution of benzaldehyde (3 mmol) in CH_2Cl_2 (12 mL) was added and the solution was stirred at room temperature for 4 hr. Ice water was added and the organic layer was separated. The water layer was extracted with CH_2Cl_2 and the combined organic layer was washed with saturated aq. NaCl solution and dried over MgSO₄. The NMR spectrum of the extract showed two singlets at about δ 6.1-6.2 (PhCHOBPh) for 6 and at about δ 8.4 (PhN = CHPh) for a lesser amount of 3. The extract was dissolved in ether (2 mL) and the solution was stirred with 2N NaOH solution (6 mL) at room temperature for 1 hr. The ether layer was separated and concentrated. The residue was dissolved in benzene and chromatographed on Al_2O_3 (Merck, standard, 15 g). The eluate with benzene contained 3 and that with CHCl₃ gave 7.

In run 4, 2-pheny1-4-(4-nitropheny1)-1,4-dihydro-3,1,2-benzoxazaborine (6) was isolated as follows: The CH_2Cl_2 -extract (1.0 g) obtained after work-up with ice water was chromatographed (SiO₂ 60, prepacked column B, Merck; CHCl₃ containing 3% CH_3CN) giving 6 (248 mg). Mp 145-147° (CH_2Cl_2 -petroleum ether). Anal. Calcd for $C_{19}H_{15}BN_2O_3$: C, 69.11; H, 4.58; N, 8.48; B, 3.28. Found: C, 68.90; H, 4.78; N, 8.46: B, 3.29. IR 3450 cm⁻¹ (NH) (CHCl₃). NMR & 6.30 (1H, s, benzyl H) (CDCl₃). MS m/e: 330 (M⁺).

The compound 7 series gave reasonable analytical values¹⁰ and spectral data, namely two to three peaks at about 3400 to 3700 cm⁻¹ assigned to NH and OH absorptions and a singlet or doublet (coupled with H of OH, J = 4 Hz) at about δ 5.8 to 6.4 assigned to benzyl proton in the IR and NMR spectra, respectively.

Adding tetrahydrofuran to dichloromethane had no substantial influence on the ratio of 6 and 3 (run 2) and changing the solvent to benzene led it to about unity.

The Table shows that our method is widely applicable except for nitroanilines (run 11 and 16), for which the yields are only moderate to poor.

An analogous reaction of 1b with furfuryl aldehyde gave the corresponding 2-aminobenzylalcohol (9) (45%) and aldimine (3) (C_4H_3O instead of Ph, X = H) (33%). 9: mp 64-65° (etherpetroleum ether). Anal. Calcd for $C_{11}H_{11}NO_2$: C, 69.82; H, 5.86; N, 7.40. Found: C, 69.97; H, 5.84; N, 7.39. IR cm⁻¹ 3600, 3380, 3400 (CHCl₃). NMR & 5.75 (1H, s, benzyl H) (CDCl₃).

Hitherto, 7 had been obtained by reduction of 2-aminobenzophenones, which were synthesized via several steps from 1,2-disubstituted benzene derivatives² or by Grignard reaction of 2nitrobenzaldehyde followed by reduction.⁸ Although we have recently found a simple synthesis of 2-aminobenzophenones,² the above mentioned method provides a regiospecific one-step synthesis of 2-aminobenzhydrols (7) from anilines under very mild conditions.

REFERENCES AND NOTES

1) Paper VII. T. Sugasawa, T. Toyoda and K. Sasakura, Synth. Commun. 9, 583 (1979).

- 2) T. Sugasawa, T. Toyoda, M. Adachi and K. Sasakura, J. Am. Chem. Soc. 100, 4842 (1978)
- 3) K. Niedenzu and J. W. Dawson, J. Am. Chem. Soc. 82, 4223 (1960).
- 4) E. Testa, L. Fontanella and M. Bovara, Chem. Abstr. 60, 6847g (1964).
- 5) D. Lednicer and D. E. Emmert, J. <u>Heterocycl</u>. <u>Chem</u>. <u>8</u>(6), 903 (1971).
- 6) E. Testa and L. Fontanella, Chem. Abstr. 66, 28719c (1967).
- 7) Fr. Demande, Chem. Abstr. 76, 99683d (1977).
- 8) R. T. Duckowski and W. A. Ross, J. Chem. Soc. 3555 (1959).
- 9) K. Niedenzu, J. W. Dawson and P. Fritz, Inorg. Synth. 10, 126 (1967).
- 10) All products except 70 (oil) gave satisfactory elemental analyses (C \pm 0.3, H \pm 0.1, N \pm 0.1, Cl \pm 0.5).

(Received in Japan 5 October 1979)